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Activated mast cells, eosinophils, and basophils infiltrate the airways of asthmatics as a result of an overex-
uberant T helper 2 (Th2) cell immune response that drives the production of IgE, primes mast cells and baso-
phils, and promotes tissue eosinophilia and mast cell hyperplasia. Recent evidence demonstrates that these
innate effectors can be activated outside of this classical Th2 cell paradigm and that they have additional
roles in promoting the development of innate and adaptive pulmonary inflammation. There is also an appre-
ciation for the role of airway epithelial cells in orchestrating allergic pulmonary inflammation. Emerging data
from basic research highlight the involvement of many unique pathways in the inflammation triggered by
complex native allergens and microbes at the airway mucosal surface. Here, we review the role of effector
cells and airway epithelial cells in augmenting and, at times, bypassing traditional Th2 cell-mediated allergic
inflammation.
Introduction
Airway inflammation, reversible airflow obstruction, and an

increased sensitivity to nonspecific irritants or bronchoconstrict-

ing agents, termed airway hyperresponsiveness (AHR), are the

cardinal features of asthma. Although inflammation had been

noted in asthmatic airway biopsies since the 1960s, it was not

until the advent of the flexible bronchoscope that inflammation

was recognized as a consistent feature of the asthmatic airway,

seen even in mild, newly diagnosed adult and pediatric patients.

Analysis of the cellular infiltrate in bronchial biopsies and bron-

choalveolar lavage (BAL) of asthmatic patients demonstrated

the presence of eosinophils, degranulated mast cells (MCs),

and T helper 2 (Th2) lymphocytes generating interleukin-3

(IL-3), IL-4, IL-5, IL-9, IL-13, and granulocyte macrophage

colony-stimulating factor (GM-CSF) (Bousquet et al., 2000; Rob-

inson et al., 1992), which differentiated asthma from chronic

obstructive pulmonary disease and focused research in airway

inflammation for the ensuing decade.

The Th2 Cell Paradigm
The specific contribution of Th2 lymphocytes to asthma was

noted in studies comparing Th2 lymphocyte infiltration to indices

of airflow obstruction or clinical course. Classical allergen chal-

lenge studies, in which aerosolized allergen is given to sensitized

asthmatics, demonstrate airflow obstruction, as measured by

a fall in forced expiratory volume in 1 min (FEV1) that begins

within several minutes, peaks by 30 min, and improves over

several hours. This ‘‘early phase’’ response is followed by a

second fall in FEV1 hours later, the ‘‘late phase.’’ Both phases

are blocked by pretreatment with inhibitors of MC degranulation

or MC-derived bronchoconstricting mediators; however, the late

phase is uniquely associated with an influx of eosinophils and T

lymphocytes and an increase in Th2 cell cytokines in the BAL and

bronchial mucosa. Furthermore, asthma severity correlates with

the extent of T cell infiltration in the BAL, and persistent lympho-
cyte activation is seen in some patients with refractory steroid-

resistant asthma (reviewed in Kay, 1997).

Mouse models of antigen-induced pulmonary inflammation

have also supported a central role for Th2 cells and their cyto-

kines. Adoptive transfer of TCR-transgenic Th2 cells, but not

Th1 cells, from DO11.10 mice and subsequent ovalbumin

(OVA) challenge of recipients induces eosinophilic airway inflam-

mation and AHR (Cohn et al., 1997; Cohn et al., 1998), and deple-

tion of CD4+ T cells prior to challenge prevents both of these

responses in OVA sensitized and challenged wild-type (WT)

mice (Gavett et al., 1994). Furthermore, sensitization and airway

challenge studies of mice with transgenic overexpression of

cytokines, targeted deletion of cytokines, or blocking cytokine

antibodies have demonstrated a central role for IL-4 in the gener-

ation of Th2 cells and IgE; for IL-5 in the promotion of airway

eosinophilia; for IL9 in the recruitment, proliferation, and differen-

tiation of MCs; and for IL-13 in induction of AHR, goblet cell

metaplasia, and mucin production (reviewed in Holgate and

Polosa, 2008). These studies have led to the dominant thesis

that activated Th2 cells orchestrate the pulmonary immune

response, stimulate B cell production of allergen-specific IgE,

and elicit the structural changes in the lung that are seen in asth-

matic patients.

Despite the strength of the Th2 cell paradigm, some features

of human asthma are not been well explained by it alone. First,

neutrophilic inflammation on bronchial biopsy is common in

asthmatics, the degree of neutrophilia is roughly correlated

with asthma severity, and neutrophilic inflammation without

eosinophils is seen in a substantial subgroup of severe cortico-

steroid-dependent asthmatics, underscoring the heterogeneity

of disease (Wenzel et al., 1999). Second, the histopathologic

features of airway inflammation—including eosinophil influx

and degranulated MCs—are similar in ‘‘intrinsic’’ asthma, in

which there is no allergic trigger of symptoms, no family or

personal history of atopy, and no evidence of allergen-specific
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IgE or elevation in total IgE (Humbert et al., 1999), suggesting that

additional pathways may be triggering the inflammation. Third,

even in well-phenotyped allergic asthmatics, the administration

of antibodies that prevent the binding of IgE to Fc3RI or that

neutralize IL-5 has had limited therapeutic efficacy and the

success of interventions directed against IL-4 and IL-13 is, as

yet, unproven (Holgate and Polosa, 2008). Fourth, viral infections

are a common trigger for exacerbation in both atopic and nona-

topic asthma. Finally, the antigen-induced AHR in the late phase

of allergen challenge in human asthma or in sensitized and chal-

lenged mice is susceptible to inhibitors that are not capable of

ameliorating the ‘‘intrinsic’’ or inflammation-independent AHR

of the human disease. These observations suggest that addi-

tional mechanisms, beyond the classical activation of Th2

lymphocytes or crosslinking of IgE, may exist to drive neutro-

philic and eosinophilic airway inflammation.

Beyond Th2 Cells
Although traditional mouse models of antigen-induced pulmo-

nary inflammation that use intraperitoneal (i.p.) OVA sensitization

(with or without aluminum hydroxide) and intranasal (i.n.), intra-

tracheal (i.t.), or aerosolized OVA challenge have been instruc-

tive, they do not include the participation of a full mucosal

immune response comparable to complex allergens such as

dust mites or molds that contain protease activity and/or innate

pattern-recognition receptor ligands for the Toll-like receptor

(TLR), C-type lectin receptor (CLR), and/or nucleotide-binding

domain, leucine-rich repeat-containing protein (NLR) families

that facilitate their immunogenicity. Recent studies in mice with

airway delivery of native allergens or respiratory viruses have un-

derscored the critical role of innate signaling in the generation of

allergic pulmonary inflammation and the complex immunologic

response that includes the participation of Th1, Th2, Th17,

NKT, and airway epithelial cells (Akbari et al., 2003; Bartlett

et al., 2008; Grayson et al., 2007; Hammad et al., 2009; Kim

et al., 2008; Phipps et al., 2009). In this review, we will discuss

the role of the epithelial cell-derived cytokines IL-25, TSLP,

and IL-33 as orchestrators of eosinophilic airway inflammation

and the contribution of NKT cells to AHR. We will then review

newly described functions for the classic effector cells, MCs,

eosinophils, and basophils. In each section, we will highlight

emerging data on the role of these innate cytokines and cells in

augmenting and, at times, bypassing traditional Th2 cell-medi-

ated allergic inflammation.

Epithelial Cell-Derived Cytokines: IL-25
IL-25 is a member of the IL-17 cytokine family but has limited

homology to IL-17A (17%), uses IL17RB rather than the

IL17RA and IL17RC heterodimer, and has distinct biologic

functions. Although IL-25 was initially reported as a product of

differentiated murine Th2 cells (Fort et al., 2001), IL-25 is made

by activated eosinophils, by bone marrow-derived mast cells

(BMMCs) and basophils after Fc3RI-mediated activation, and

by epithelial cells in response to allergens such as Aspergillus

oryzae, Aspergillus fumigatus, ragweed, and the house dust

mite, Dermatophagoides pteronyssinus (Dp) (Hammad et al.,

2009 and reviewed in Saenz et al., 2008). Thus, IL-25 generation

is induced in both innate and adaptive immune responses to

allergens.
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IL-25 acts on both recruited hematopoietic cells and native

resident cells in the lung. IL-25 promotes the differentiation of

murine Th2 cells in an IL-4- and STAT6-dependent manner

in vitro (Angkasekwinai et al., 2007). IL-17RB is expressed on

murine CD4+ invariant NKT (iNKT) cells in which it identifies

a potent IL-4- and IL-13-producing subset that, on adoptive

transfer, can reconstitute AHR in sensitized and challenged

iNKT cell-deficient mice (Terashima et al., 2008) (see NKT Cells).

OVA-alum sensitization and OVA aerosol challenge of mice with

the transgenic overexpression of IL-25 elicits elevated BAL

eosinophils, IL-4, IL-5, and IL-13, which is abrogated with anti-

CD4 prior to challenge or with crossing to Stat6�/� mice (Tama-

chi et al., 2006), suggesting that CD4+ Th2 cells can mediate

IL-25 effects in vivo. In an early report of IL-25 function in vivo

(Hurst et al., 2002), WT and Rag1�/�mice treated with recombi-

nant IL-25 (rIL-25) or an adenoviral construct expressing IL-25

generated high levels of IL-5 and IL-13 transcripts in the spleen,

suggesting that a non-B/non-T (NBNT) cell could also mediate

production of Th2 cytokines in response to IL-25. The i.n. admin-

istration of murine rIL-25 into C57BL/6 WT mice generates BAL

eosinophilia and whole lung IL-5, IL-13, and eotaxin transcripts

24 hr later, each of which is significantly reduced in mice with

an epithelial-specific knockout of Act1, an adaptor protein

required for IL-17RB signaling, identifying a pathway for an

epithelial cell response (Swaidani et al., 2009). Thus, IL-25 acts

on an unusual range of hematopoietic and stromal cells to influ-

ence both innate and adaptive pulmonary inflammation.

Studies that use overexpression of IL-25 or administration of

rIL-25 have consistently demonstrated a capacity for induction

of Th2 cytokines and eosinophilia. Systemic administration of

rIL-25 for 10 days in C57BL/6 mice induced peripheral blood

eosinophilia, splenomegaly, eosinophilic infiltration of the spleen

and lung, pulmonary goblet cell metaplasia, medial hypertrophy

of the small and medium-sized pulmonary arteries, and elevated

serum IgG1, IgA, and IgE, among other abnormalities (Fort et al.,

2001). Adenoviral vector-mediated overexpression of IL-25 led

to similar immunoglobulin abnormalities and histologic changes

in the lungs with the addition of perivascular fibrosis. Il4ra�/� and

Il13�/� mice infected with the same construct were protected

from mucus production and goblet cell metaplasia, Il4ra�/�

and Il4�/�mice were protected from the increased immunoglob-

ulin levels and pulmonary vascular changes, and WT mice

treated with anti-IL-5 were protected from peripheral blood

eosinophilia, demonstrating that IL-25-dependent pathology is

mediated entirely through downstream Th2 cytokines. Studies

using the transgenic overexpression of murine IL-25 or IL-25

adenoviral vector infection reported similar abnormalities as

well as elevations in circulating or BAL neutrophils (reviewed in

Wang and Liu, 2009). Lastly, a recent study has shown that

matrix matalloproteinase 7, an enzyme induced in allergen-acti-

vated airway epithelial cells, can both augment levels of IL-25 as

well as cleave it to a more active form to promote Th2 cytokine

production (Goswami et al., 2009).

Several studies have addressed the role of IL-25 in murine

models of antigen-induced pulmonary inflammation and AHR.

Balb/c mice sensitized with i.p. OVA-alum and challenged with

aerosolized OVA have an upregulation of IL-25 transcript in the

lung and eosinophils, CD4+ T cells, and IL-5 and IL-13 protein

in the BAL, each of which is reduced in mice treated with
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a soluble IL-25 receptor fusion protein prior to each OVA chal-

lenge (Tamachi et al., 2006). The administration of anti-IL-25 to

WT Balb/c mice prior to OVA-alum sensitization and prior to

OVA aerosol challenge decreased AHR, pulmonary cellular

infiltrate, BAL eosinophilia, OVA-specific serum IgE, and IL-5

and IL-13 generated by restimulation of parabronchial lymph

node cells with OVA ex vivo (Ballantyne et al., 2007). Interest-

ingly, when mice were treated with anti-IL-25 only during the

OVA aerosol challenge phase, AHR was abolished and IL-5

and IL-13 levels in the BAL were diminished, but pulmonary

cellular infiltrate and goblet cell metaplasia, OVA-specific serum

IgE, and Th2 cytokines from restimulation of parabronchial LN

cells with OVA ex vivo were intact. Direct intranasal injection of

IL-25 elicited AHR in Balb/c WT, Il13�/�, and Il4�/�Il5�/�Il9�/�

Il13�/� strains, suggesting an independent effect of IL-25. Taken

together, murine in vitro and in vivo studies suggest that IL-25

can potentiate the induction of Th2 cell airway inflammation in

the sensitization phase, can amplify Th2 inflammation in the

challenge phase, and can induce AHR in the absence of Th2

cytokines.

There is limited data on the role of IL-25 in human asthma.

IL-25 potentiates the proliferation of CD4+CD45RO+CRTH2+

human Th2 memory cells and augments their production of

IL-4, IL-5, and IL-13 (Wang et al., 2007). IL-17RB protein is

expressed on cultured primary human airway smooth muscle

cells (Lajoie-Kadoch et al., 2006), on human fibroblast cell lines

(Létuvé et al., 2006), and on human peripheral blood mono-

cyte-derived macrophages cultured in the presence of IL-4 or

IL-4 and TGF-b (Gratchev et al., 2004). Cultured human periph-

eral blood eosinophils also express IL-17RB that mediates

production of IL-6, IL-8, MIP-1a, and MCP-1, prevents eosino-

phil apoptosis, and alters eosinophil adhesion proteins with an

upregulation of ICAM-1 and a downregulation of ICAM-3 and

L-selectin (Cheung et al., 2006; Wong et al., 2005). Bronchial

biopsies of patients with asthma show elevations of IL-25 and

IL-17RB transcripts as compared to normal controls. Immuno-

histochemical studies have also shown IL-25 protein in submu-

cosal inflammatory cells of asthmatic bronchial biopsies (Létuvé

et al., 2006), supporting a role for this mediator in human disease.

Epithelial Cell-Derived Cytokines: IL-33
IL-33 is a member of the IL-1 cytokine family. RT-PCR from

human and mouse cDNA libraries have shown IL-33 transcript

in murine and human epithelial cells, DCs, and activated macro-

phages and in human bronchial smooth muscle (Schmitz et al.,

2005). In a murine model of antigen-induced pulmonary inflam-

mation, intracellular cytokine staining revealed IL-33 in alveolar

CCR3-F4/80+ myeloid cells (Kurowska-Stolarska et al., 2008),

whereas in a model with direct i.t. administration of house dust

mite, Dp, IL-33 protein in the BAL was recovered from WT

mice, but not Tlr4�/� mice or bone marrow chimeras with WT

reconstitution of Tlr4�/�mice (Hammad et al., 2009), suggesting

there are multiple cellular sources during both the innate and

adaptive immune components of allergic inflammation.

IL-33 acts at the Toll/interleukin-1 (TIR) domain-containing

receptor ST2. Soluble and transmembrane forms of the receptor,

produced by differential mRNA splicing, act as a soluble decoy

or transmembrane activator, respectively (see below). IL-33

can activate murine BMMCs to release TNF-a, IL-1b, IL-6,
IL-13, Rantes, GM-CSF, MCP-1, MIP1-a, and MIP1-b (Ali

et al., 2007; Ho et al., 2007; Kondo et al., 2008) and can activate

murine bone marrow-derived basophils to produce IL-6, IL-4,

IL-9, IL-13, Rantes, and MCP-1 (Kondo et al., 2008; Kroeger

et al., 2009). Stimulation of committed murine Th2 cells with

IL-33 elicits production of IL-4, IL-5, and IL-13 (Coyle et al.,

1999; Kondo et al., 2008; Lohning et al., 1998), whereas stimula-

tion of naive purified CD4+CD62L+ DO11.10 T cells with IL-33

induces the generation of Th2 cells in a manner dependent on

ST2 and MyD88 signaling, but independent of IL-4, IL-4Ra,

and STAT6 (Kurowska-Stolarska et al., 2008). These in vitro

studies emphasize that IL-33 can promote Th2 cell immunity

through both the direct activation of innate effector cells and

the generation and activation of IL-4-independent, MyD88-

dependent Th2 cells.

Several studies have demonstrated a role for ST2 (encoded by

Il1r1) in Th2 cell pulmonary inflammation. In models using direct

OVA-alum sensitization and OVA aerosol or intranasal challenge,

Il1rl1�/�mice on a Balb/c background had reduced eosinophilia

and IL-5 in the BAL and reduced cellular influx into the lung

(Kurowska-Stolarska et al., 2008). Similarly, administration of

the ST2-specific mAb prior to the sensitization and challenge

of WT Balb/c mice attenuated eosinophilia and IL-5 levels in

the BAL, as well as serum OVA-specific IgE (Coyle et al.,

1999). Two murine studies using adoptive transfer of Th2 cells

from DO11.10 mice into WT recipients with subsequent OVA

aerosol challenge have shown reductions in induced AHR, BAL

eosinophilia, and BAL concentrations of IL-4, IL-5, IL-6, and

IL-13 with the administration of either an ST2-specific mAb or

an ST2-IgG soluble fusion protein prior to each OVA challenge

(Coyle et al., 1999; Lohning et al., 1998), emphasizing a role for

this pathway in the challenge phase. When WT or Il4�/� mice

were subjected to an OVA-alum sensitization and OVA challenge

protocol with only 10 ug of OVA for sensitization, the addition of

exogenous IL-33 during sensitization triggered similar BAL

eosinophilia, pulmonary inflammation, goblet cell metaplasia,

and IL-5-producing CD4+ST2+ T cells upon challenge (Kurow-

ska-Stolarska et al., 2008), thereby demonstrating that IL-33

can specifically promote IL-4-independent Th2 cells that partic-

ipate in antigen-induced immune responses. In a pharmacologic

study, repeated i.p. injection of rIL-33 induced goblet cell meta-

plasia and AHR to methacholine in Balb/c WT and Rag2�/�mice

similarly, demonstrating that the direct actions of IL-33 on innate

effector cells can bypass the requirement for Th2 cells (Kondo

et al., 2008). Lastly, studies using OVA-alum sensitization and

OVA challenge with higher doses of antigen (100 mg) or longer

protocols (28 days) have not shown a dependence on ST2

signaling (Hoshino et al., 1999; Kurowska-Stolarska et al.,

2008), indicating that the IL33-ST2 pathway can be bypassed

with continued immune stimulation. In sum, murine in vitro and

in vivo studies demonstrate that IL-33 acts in the effector phase

to augment Th2 cytokine production and inflammation via direct

effects on both Th2 cells and innate effectors and can generate

AHR and goblet cell metaplasia in the absence of adaptive

immunity.

In studies of human cells, IL-33 stimulation potentiates the

production of IL-4, IL-5, and IL-13 from CD3+CRTH2+ Th2 cells

in the peripheral blood and from cord blood CD4+ cells activated

by anti-CD3 and anti-CD28 (Kurowska-Stolarska et al., 2008;
Immunity 31, September 18, 2009 ª2009 Elsevier Inc. 427
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Pecaric-Petkovic et al., 2009). IL-33 can activate human MCs

cultured from peripheral blood or cord blood-derived CD34+

MC progenitors to generate IL-5, IL-13, GM-CSF, TNF-a,

IL-10, IL-6, CXCL8, and CCL1, without degranulation or the

production of prostaglandin D2 or leukotriene C4 (LTC4) (Allakh-

verdi et al., 2007b). IL-33 can increase CD11b expression and

enhance the survival of freshly isolated human peripheral blood

eosinophils in an ST2-dependent fashion without degranulation

or LTC4 synthesis. IL-33 can also augment production of IL-8

by human eosinophils in response to IL-3, IL-5, and GM-CSF

(Pecaric-Petkovic et al., 2009). ST2 is expressed by purified

human basophils primed with IL-3 (Suzukawa et al., 2008), and

IL-33 stimulation can increase basophil production of IL-4,

expression of ICAM-1, VCAM-1, and CD11b, and release of

histamine in response to Fc3RI crosslinking (Suzukawa et al.,

2008). Asthmatics have a baseline increase in serum ST2 levels

as compared to normal controls, and there is a marked increase

in these levels during asthma exacerbations. ST2 levels correlate

inversely with peak expiratory flow, suggesting elaboration of a

soluble trap for IL-33 with exacerbations in these atopic patients

(Oshikawa et al., 2001).

Epithelial Cell-Derived Cytokines: TSLP
Thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine

initially cloned from a murine thymic epithelial cell line and iden-

tified as a factor that supported the in vitro development of T and

B cells (Friend et al., 1994; Sims et al., 2000). TSLP protein is de-

tected in human bronchial epithelial cell cultures after stimulation

with dsDNA, rhinovirus, peptidoglycan, or the combination of

IL1b and TNF-a (Allakhverdi et al., 2007a; Kato et al., 2007)

and in the BAL of WT mice after the i.t. administration of the

house dust mite, Dp (Hammad et al., 2009). TSLP transcript is

generated after mAb-mediated Fc3RI crosslinking on human

CD34+ cell-derived MCs (Soumelis et al., 2002). TSLP protein

is generated in murine basophil cultures after IgE crosslinking

or in an innate response to proteolytically active papain (Sokol

et al., 2008). Thus, TSLP can be produced in response to aller-

gens, viruses, cytokines, and PAMPs in the setting of innate or

adaptive immune responses.

TSLP stimulates human peripheral blood CD11c+ DCs to upre-

gulate the expression of HLA-DR and costimulatory molecules

(CD40, CD80, CD86, and CD83) and to generate TARC and

MDC, but not IL-12 p70, type I interferons, or the proinflamma-

tory cytokines IL-1b, IL-6, and TNF-a (Soumelis et al., 2002).

TSLP-treated DCs prime human naive CD4+ T cells to produce

IL-4, IL-5, IL-13, and TNF-a (Liu, 2006; Soumelis et al., 2002).

The upregulation of OX40L on TSLP-treated DCs is central to

their role in Th2 differentiation, given that this function is abro-

gated in the presence of OX40L neutralizing antibodies (Ito

et al., 2005; Seshasayee et al., 2007). TSLP can also act directly

on T cells to enhance Th2 cytokine production, as illustrated in

a model of atopic dermatitis with i.p. OVA sensitization and epi-

cutaneous OVA challenge in which the administration of TSLP

antibodies prior to OVA challenge had no effect on CD4+T cell

recruitment to the tissue but significantly impaired cutaneous

Th2 cytokine production and eosinophil recruitment (He et al.,

2008). TSLP can also drive the proliferation of TCR-activated

human CD4+ T cells (Omori and Ziegler, 2007; Rochman et al.,

2007). In conjunction with IL-1b and TNF-a, TSLP is a potent
428 Immunity 31, September 18, 2009 ª2009 Elsevier Inc.
stimulus for human cord blood- or peripheral blood-derived

MCs to generate IL-5, IL-13, IL-6, GM-CSF, IL-10, CXCL8, and

CCL1 (Allakhverdi et al., 2007a). Thus, the diverse cell sources

and functions recognized in vitro for TSLP suggest that it can

potentiate allergic inflammation via several cellular targets.

Murine studies have highlighted a role for TSLP in Th2 immune

responses in the lung. Mice with transgenic overexpression of

TSLP in airway epithelial cells display spontaneous pulmonary

inflammation with remarkable BAL cellularity and eosinophilia,

pulmonary inflammation with goblet cell metaplasia and perivas-

cular fibrosis, and AHR (Zhou et al., 2005). Conversely, TSLPR

receptor- (TSLPR)-deficient (Crlf2�/�) mice are protected from

antigen-induced pulmonary inflammation in a model with OVA-

alum i.p. sensitization and OVA aerosol challenge (Zhou et al.,

2005). A second Crlf2�/� strain also showed attenuation of

inflammation with OVA sensitization and challenge that could

be reversed by adoptive transfer of WT but not Crlf2�/� CD4+

T cells from OVA sensitized donors to the deficient mice prior

to antigen challenge (Al-Shami et al., 2005). TSLP conditions

DCs to express OX40L and treatment of mice with a neutralizing

antibody to OX40L attenuated the serum IgE, pulmonary inflam-

mation, and BAL IL-4, IL-5, and IL13 protein elicited by either

direct intranasal injection of TSLP or by OVA-alum sensitization

and OVA intranasal challenge (Seshasayee et al., 2007). The

OX40L neutralizing antibody was efficacious even when admin-

istered in the challenge phase. Thus, TSLP can regulate both

primary and secondary Th2 cell immune responses.

Biopsies from the mucosa of asthmatic patients show an

elevated number of cells containing TSLP transcript as com-

pared to normal controls (Ying et al., 2005). TSLP transcript is

expressed in neutrophils, macrophages, MCs, epithelial cells,

and endothelial cells, and the number of TSLP+ cells is correlated

with the severity of airflow obstruction, as assessed by FEV1.

Although a supporting role for TSLP in generating, maintaining,

or amplifying human asthma is suggested by the data in mice,

direct translation to human asthma, as for IL-25 and IL-33, awaits

support from further clinical studies and targeted interventions.

NKT Cells
NKT cells recognize both foreign and endogenous glycolipids

presented by the MHC class I (MHC I)-like molecule CD1d on

APCs. Type I iNKT cells express a restricted repertoire of ab

TCRs, with Va24-Ja18 in human and Va14-Ja18 in mice along

with a limited set of Vb chain gene segments, whereas type II

or variant NKT cells utilize more diverse TCRs. iNKT cells recog-

nize a-galactosylceramide (a-GalCer), which is loaded onto a

tetramer to identify iNKT cells by flow cytometric analysis and

is used as a ligand for their activation. In addition, iNKT cells

can be activated by IL-12, IL-18, IL-33, and type 1 interferons

generated from TLR signaling in DCs that amplify weak signals

from endogenous glycolipid-loaded CD1d or bypass the CD1d

requirement entirely (reviewed in Tupin et al., 2007).

Murine studies have demonstrated a role for iNKT cells in

induction of IL-13-dependent AHR. Both Cd1d1�/�mice (lacking

iNKT cells and variant NKT cells) on a Balb/c background or Ja18-

deficient mice (lacking iNKT cells) on a Balb/c or a C57BL/6

background sensitized with i.p. OVA-alum and challenged with

i.n. OVA had diminished AHR, as compared to their WT controls,

that was restored with the transfer of tetramer-purified iNKT
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cells (Akbari et al., 2003; Lisbonne et al., 2003). AHR was depen-

dent on iNKT cell cytokine production because it was reconsti-

tuted by transfer of tetramer-purified iNKT cells from WT but

not Il4�/�Il13�/� mice into sensitized recipient Ja18-deficient

mice prior to i.n. challenge with OVA. In a protocol of suboptimal

i.p. sensitization with OVA-alum and i.n. challenge with OVA that

used 2 ug of IL-25 for priming prior to OVA challenge, Ja18-defi-

cient mice had attenuated AHR that was uniquely restored with

transfer of a splenic CD4+ iNKT cell subpopulation expressing

IL-17RB (Terashima et al., 2008). Additionally, a recent murine

study of Sendai virus-induced chronic pulmonary inflammation

demonstrated that IL-13-producing CD4� iNKT cells identified

in the lung 21 and 49 days after infection promoted the recruit-

ment and activation of CD68+IL13+ alternatively activated macro-

phages (Kim et al., 2008). Macrophage activation was critical for

subsequent airway goblet cell hyperplasia and AHR in WT mice

and was abrogated in both Cd1d1�/� and Ja18-deficient strains.

Thus, iNKT cells, activated in the setting of antigen, proinflamma-

tory cytokines, or viral infection can promote AHR and structural

airway changes, termed airway remodeling.

Notably, studies with B2m�/� strains, which also lack iNKT

cells, have not demonstrated an impairment in AHR in immuniza-

tion protocols that are more severe (Brown et al., 1996; Koh

et al., 2008), demonstrating the ability to bypass the iNKT cell

contribution to AHR. Although one study has reported a signifi-

cant decrement in BAL eosinophilia and antigen-specific IgE

after sensitization and challenge of C57 Ja18-deficient mice

(Lisbonne et al., 2003), studies using stronger immunization

protocols in B2m�/� mice (Brown et al., 1996; Das et al., 2006;

Koh et al., 2008; Zhang et al., 1996) and in Cd1d1�/� mice (Ak-

bari et al., 2003; Das et al., 2006) have not demonstrated any

impairment. Thus, the aggregate studies in B2m�/�, Cd1d1�/�,

and Ja18-deficient strains in models of antigen-induced pulmo-

nary inflammation indicate a circumscribed role for NKT cells in

IL-13-dependent AHR (but no clear effect on the cellular infil-

trate) that can be bypassed with stronger protocols.

iNKT cells are <1% of peripheral blood CD4+ cells and <1% of

BAL CD4+ cells in nonasthmatic subjects. An initial study report-

ing a high percentage of CD4+a-GalCer-loaded CD1d tetramer+

cells in the BAL and bronchial biopsies of patients with moderate

to severe asthma has not been duplicated (Akbari et al., 2006;

Thomas et al., 2006; Vijayanand et al., 2007). However, some

increase in CD4+ a-GalCer-loaded CD1d tetramer+ cells was

seen in the BAL of asthmatic children as compared to normal

controls (Pham-Thi et al., 2006), and an increased percentage

of Va24+6B11+ iNKT cells was seen in the BAL of adult

asthmatics, as compared to peripheral blood (Thomas et al.,

2007). Finally, another recent study demonstrated that

CCR9+Va24+ INF-g-producing iNKT cells isolated from the

peripheral blood of asthmatics, but not normal controls, can

direct Th2 cytokine generation from cocultured conventional

CD3+ T cells in a manner dependent on CD226, a member of

the Ig superfamily that mediates cell-cell adhesion (Sen et al.,

2005). This same CCR9+Va24+ IFN-g-producing iNKT cell pop-

ulation was found in the bronchial biopsies of asthmatics, but

not normal controls, and was associated with upregulation of

mucosal Th2 cytokine transcripts as well as the CCR9 ligand

CCL25, suggesting a role for IFN-g-producing iNKT cell in

bronchial asthma.
Mast Cells
MCs are well-established effectors in allergic airway inflamma-

tion. Crosslinking of Fc3RI by IgE-bound inhaled antigen can

trigger degranulation, defined by the release of the preformed

secretory granule complex and subsequent extracellular disso-

ciation of preformed mediators (e.g., histamine and certain

proteases). Activation is accompanied by the rapid synthesis

of lipid mediators (e.g., cys-LTs, dihydroxy leukotrienes, and

prostaglandin D2), and the induction of cytokines and chemo-

kines (e.g., IL-4, IL-13, IL-12, IL-1, IL-18, TNF-a, etc.). Through

the sequential and/or synergistic actions on the same target

tissue, this array of inflammatory mediators can elicit and sustain

a vascular leak, constrict smooth muscle, and initiate inflamma-

tory cell infiltration. MC mediator release can also be triggered by

innate signals, and although innate MC activation can be part of

a protective immunity to pathogens (reviewed in Marshall, 2004),

it also expands the variety of signals that can elicit pathologic

airway inflammation in asthma. Here, we review recent informa-

tion on MC activators beyond the antigen-induced crosslinking

of Fc3RI, as well as MC participation in initiating and amplifying

immunologic responses.

Mature MCs develop in peripheral tissues after transendothe-

lial migration of circulating MC progenitors (MCps). In mice, the

recruitment of MCps to the lung is dependent on the binding of

integrins a4b1 and a4b7 on MCp to endothelial vascular cell adhe-

sion molecule 1 (VCAM-1), the expression of which is regulated

by CXCR2 (Hallgren et al., 2007). The development of MCps and

their tissue maturation is dependent on the stimulation of Kit by

stem cell factor, which is a lineage-specific requirement. There

are two major MC subtypes, the connective tissue MC (CTMC)

sustained by SCF alone, and the intraepithelial mucosal MC

(MMC) that is dependent on costimulation by Th2 cytokines.

In addition to their different tissue distributions, these two MC

populations differ in the composition of their secretory granule

proteoglycans to which cationic proteases and amines are

bound. In rodents, the MMC secretory granule proteoglycan is

primarily composed of chondroitin sulfates that bear, in mice,

two b-chymases, mouse MC protease 1 (mMCP-1), and

mMCP-2, whereas the CTMC proteoglycan is composed pre-

dominantly of heparin glycosaminoglycans, which carry diverse

proteases that include chymases (mMCP-4 and mMCP-5), tryp-

tases (mMCP-6 and mMCP-7), and carboxypeptidase A. In

human MCs, the secretory granule proteoglycan has both chron-

droitin sulfate and heparin chains, and the MMC carry tryptase,

whereas the CTMC carry tryptase, chymase, and carboxypepti-

dase A (reviewed in Stevens and Adachi, 2007).

In vitro studies of rodent and of human MCs, generally

obtained by culture of progenitors, have demonstrated that

innate stimuli induce cytokines and LTC4 generation from MCs.

TNF-a, for example, can be generated by MCs in response to

signaling via TLR2 and TLR1, TLR2 and TLR6, TLR3, TLR4,

TLR7, and TLR9 (reviewed in Marshall, 2004). MC exocytosis

and LTC4 generation require the mobilization of calcium, which

is triggered by TLR2 and Dectin-1 signaling (Marshall, 2004;

Olynych et al., 2006). Whereas these studies highlight the wide

variety of innate signals that can activate MCs, they also under-

score the selectivity of mediator release in response to these

signals and the propensity for calcium mobilization and eicosa-

noid production to be restricted to TLR2 and CLR signaling, as
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has been seen in macrophages and DCs (Barrett et al., 2009;

Buczynski et al., 2007; Suram et al., 2006). Although there is

now evidence that major crude allergens carry innate signals

for TLRs and CLRs, as well as epitopes for an IgE response (Bar-

rett et al., 2009; Hammad et al., 2009; Phipps et al., 2009), the

integrated role of allergen-derived innate signals in MC activation

is not known.

MCs can modulate DC antigen presentation and T cell activa-

tion. Murine BMMCs treated with IL-4 and the P815 and MC-9

MC lines spontaneously release exosomes, small endocytic

vesicles that contain soluble antigen as well as membrane-

bound MHCII and the costimulatory molecules CD80, CD86,

and CD40 (Skokos et al., 2003). Antigen-loaded exosomes are

potent activators of DCs and stimulate robust production of

serum IgG1 and IgG2a when injected s.c. into mice, which is

dependent on the MC exosomal proteins hsp60 and hsc70 and

the DC endocytic receptor for many heat shock proteins,

CD91. Another study has shown antigen transfer from MCs to

DCs by a distinct mechanism (Kambayashi et al., 2008). BMMCs

or freshly isolated peritoneal MCs ‘‘sensitized’’ with OVA-specific

IgE demonstrate endocytosis of IgE-bound OVA and activation

of CD4+ OT-II splenocytes that is dependent on apoptosis of

the BMMCs and their phagocytosis by BMDCs. MCs can provide

costimulation to activated T cells, given that BMMCs sensitized

with IgE and activated with antigen can augment the cell prolifer-

ation and cytokine production by cocultured CD3 mAb-activated

splenic T cells in a manner that is dependent on cell contact and

that is neutralized with antibody to OX40L, a molecule that is

expressed on activated BMMCs (Nakae et al., 2006).

The role of MCs in antigen-induced pulmonary inflammation

has been approached by use of the MC-deficient mouse strains

KitW/W-v or KitW-sh/W-sh with disruptions in the stem cell factor

receptor c-kit, which is required for normal MC growth and

survival. Because these strains have other hematologic abnor-

malities, (KitW/W-v are leukopenic and anemic [Galli et al., 2005];

KitW-sh/W-sh have splenomegaly, neutrophilia, and thrombocyto-

sis [Nigrovic et al., 2008]), MC engraftment achieved 8–12 weeks

after adoptive transfer of BMMCs is used for defining the MC

contribution to the disease phenotype. This approach does not

restore the number and location of mature MCs to the WT

phenotype. Nonetheless, a MC contribution was demonstrated

in a study using OVA i.p. sensitization without alum and in

repeated aerosol challenges over 9 weeks in both KitW/W-v and

KitW-sh/W-sh. The MC-deficient mice had substantially reduced

BAL eosinophils, neutrophils, and lymphocytes, pulmonary

eosinophilia, goblet cell metaplasia, and induced AHR that was

reversed with engraftment of WT BMMCs before initiating the

protocol (Yu et al., 2006). Engraftment of MC-deficient mice

with Fc3R1 g chain-deficient BMMCs, which cannot be activated

through either Fc3RI or FcgRIII, could not fully restore any aspect

of the phenotype, indicating a role for MCs in amplifying tissue

inflammation. In a model using intranasal OVA and LPS for sensi-

tization and OVA alone for challenge in KitW/W-v mice or the

WBB6F1 controls, the MC-deficient strain had reduced eosino-

philic inflammation in the BAL and lung histopathology. This

was reversed on adoptive transfer of BMMCs from C57BL/6

WT but not from Tlr4�/� mice, suggesting that MC activation

by TLR4 can provide critical signals to promote eosinophilic

inflammation (Nigo et al., 2006). Although the MC mediator
430 Immunity 31, September 18, 2009 ª2009 Elsevier Inc.
was not identified, TNF-a is a prominent product of LPS-acti-

vated murine BMMCs (McCurdy et al., 2001), and TNF-a can

augment lung DC migration to draining lymph nodes after intra-

nasal injection of FITC-OVA, given that the number of FITC-OVA+

DCs in the draining lymph nodes of Tnf�/�, Tnfrsf1a�/�, MC-defi-

cient KitW/W-v or KitW-sh/W-sh, or KitW-sh/W-sh mice reconstituted

with BMMCs from Tnf�/� mice was decreased as compared to

WT or KitW-sh/W-sh mice reconstituted with BMMCs from WT

mice (Suto et al., 2006). Thus, Fc3RI-activated MCs augment

tissue inflammation in the challenge phase and TLR4-activated

MCs can generate TNF-a for DC mobilization in the sensitization

phase. Nonetheless, the contribution of B cells, IgE, and MCs to

antigen-induced inflammation and AHR is strictly context depen-

dent such that MC-deficient mice display no defects in AHR or

pulmonary eosinophilia in antigen sensitization and challenge

protocols that use strong systemic adjuvant, high doses of

antigen, or prolonged challenges (Hamelmann et al., 1999;

Takeda et al., 1997; Williams and Galli, 2000).

A role for MCs in human asthma is evident in studies using

allergen challenge in sensitized asthmatics. Although the early

phase is associated with MC degranulation and an increase in

plasma histamine and urinary LTE4, both phases are attenuated

by pretreatment with sodium chromoglycate (an inhibitor of MC

degranulation), a 5-lipoxygenase inhibitor (preventing cys-LT

synthesis), a CysLT1 receptor antagonist, or antihistamines

(reviewed in Bradding, 2003). The MC contribution to asthma is

underscored by two recent findings. Omalizumab, an anti-IgE

mAb that blocks IgE binding to Fc3RI, decreases asthma exac-

erbations and allows reductions in corticosteroid use (Busse

et al., 2001; Milgrom et al., 1999), supporting a role for MCs in

chronic allergic inflammation. In an anatomic study of patients

with allergic asthma and with eosinophilic bronchitis, a disease

characterized by steroid-responsive cough and sputum eosino-

philia without airway hyperresponsiveness, bronchial biopsies

demonstrated equal numbers of submucosal MCs and eosino-

phils in both groups. In contrast, there was a selective increase

in tryptase and chymase positive MCs in the smooth muscle

layer of subjects with either atopic or nonatopic asthma. MC infil-

tration correlated with AHR, suggesting that localization of MCs

to the bronchial smooth muscle is a unique feature of airway

hyperresponsiveness (Brightling et al., 2002).

Eosinophils
Eosinophils are circulating granulocytes that are expanded in

bone marrow and that are recruited to peripheral tissues in the

settings of parasitic infection and allergic disease. The terminal

differentiation and mobilization of eosinophils from the bone

marrow is under the direction of IL-5. Eosinophils can generate

lipid mediators such as LTC4; cytokines such as IFN-g and

IL-2 (Th1) and IL-4, IL-5, IL-10, IL-13, and TNF-a (Th2); and

Th2 cell chemokines including CCL17 and CCL22 (reviewed in

Akuthota et al., 2008). Here, we review recent human studies

that highlight the importance of eosinophils in airway remodeling

(Flood-Page et al., 2003) and in asthma exacerbations in a partic-

ular subgroup of patients (Haldar et al., 2009; Nair et al., 2009),

and murine studies that extend its role beyond the classic

effector functions.

Eosinophils can modulate adaptive immune processes and

even act as antigen-presenting cells. Murine airway eosinophils
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harvested via BAL from sensitized and challenged mice have

elevated expression of MHCII, CD80, and CD86, can present

OVA antigen to memory T cells in vitro, and can stimulate activa-

tion and proliferation of memory DO11.10 T cells when trans-

ferred to previously sensitized recipients (Shi et al., 2000).

Ova-pulsed eosinophils from naive IL-5 transgenic mice can

activate naive DO11.10 TCR transgenic T cells when transferred

into WT recipients 24 hr after i.v. infusion of DO11.10 CD4+ cells

(Wang and Weller, 2008), demonstrating their ability to act as

professional APCs. However, human eosinophils cultured with

IL-3, IL-5, or GM-CSF can support the proliferation of T cell

clones to antigenic peptides, but not intact antigen, from tetanus

toxoid and from influenza hemaglutinin, demonstrating their

limited antigen-presenting function (Celestin et al., 2001).

Human eosinophil-derived neurotoxin (EDN) can activate human

monocyte-derived DCs to upregulate costimulatory molecules

and generate IL-6, IL-8, IL-12p70, and TNF-a in a MyD88-

dependent fashion (Yang et al., 2008). EDN acts as a TLR2

ligand and immunization of C57BL/6 mice with OVA and EDN

substantially augments anti-OVA IgG1 titers and splenic T cell

proliferation and cytokine production upon antigen restimulation

ex vivo, all of which is abrogated in Tlr2�/�mice. Eosinophils can

augment B cell activation in other settings. In a study of WT,

eosinophil-deficient dblGATA mice with deletion of the high-

affinity GATA binding site in the GATA-1 promoter and dblGATA

mice after i.v. infusion of eosinophils, splenic B cell activation

and the production of antigen-specific antibodies was depen-

dent on the presence of eosinophils (Wang and Weller, 2008).

Thus, by acting as an APC, augmenting DC antigen presenta-

tion, and enhancing immunoglobulin production, eosinophils

can have important effects on the generation of adaptive

immunity.

Two eosinophil-deficient mouse strains have demonstrated

a discrepancy in the requirement for eosinophils in antigen-

induced pulmonary inflammation. The PHIL mouse (Lee et al.,

2004), with the selective expression of diphtheria toxin A under

the EPO promoter, is on a C57BL/6 background, whereas the

dblGATA mouse (Humbles et al., 2004) is on the Balb/c back-

ground. Whereas PHIL mice had reduced antigen-induced

AHR in a protocol of OVA-alum sensitization and OVA challenge,

dblGATA mice did not. However, when dblGATA mice were

crossed to a C57 background, they also had attenuation of

antigen-induced AHR, which was reversed by eosinophil infu-

sion (Walsh et al., 2008). Both the PHIL and dblGATA mice on

a C57BL/6 background have a failure to recruit CD4+ T cells to

the lung with deficits in generation of pulmonary chemokines

CCL7, CCL11, and CCL24 and chemokines CCL17 and CCL22,

respectively (Jacobsen et al., 2008; Walsh et al., 2008). CD4+

T cell recruitment to the lung is restored either by infusion of

eosinophils (Jacobsen et al., 2008) or by i.n. delivery of eo-

taxin-1 during OVA challenge (Walsh et al., 2008), again demon-

strating that eosinophils are not simply terminal effector cells but

rather active participants during an adaptive Th2 cell response in

mice. Lastly, the Balb/c dblGATA mice had a decrement in peri-

bronchial collagen deposition and airway smooth muscle cell

proliferation (Humbles et al., 2004), and both PHIL mice and

C57BL/6 dblGATA mice had a decrement in PAS-positive goblet

cell metaplasia (Lee et al., 2004; Walsh et al., 2008), suggesting

a role for eosinophils in features of airway remodeling.
Many clinical studies have documented a correlation between

pulmonary eosinophilia and asthma. Eosinophils are recruited to

the lung after segmental allergen challenge of atopic asthmatics.

Activated eosinophils are found in the induced sputum, BAL, and

mucosal biopsies of patients with asthma, and the degree of

peripheral blood and BAL eosinophilia correlates with disease

severity. Furthermore, the degree of eosinophilia in mucosal

biopsies correlates with inherent airway hyperresponsiveness

(reviewed in Bousquet et al., 2000). Increases in sputum eosino-

philia can predict the loss of asthma control, and several

randomized controlled trials have shown that adjusting inhaled

glucocorticoid doses to reduce sputum eosinophils can de-

crease exacerbations without an increase in total inhaled or

oral corticosteroid use (reviewed in Petsky et al., 2007). Although

these studies argue for the eosinophil as a marker of disease

activity, data supporting a pathobiologic role for eosinophils in

the clinical course of human bronchial asthma have been more

elusive until recently. Two randomized controlled trials using a

monoclonal antibody to IL-5 in patients with severe asthma

and persistent eosinophilia despite high doses of corticosteroids

have shown a reduction in clinical exacerbations associated with

reductions in peripheral blood and sputum eosinophils (Haldar

et al., 2009; Nair et al., 2009). Although this confirms a pathobio-

logic role for eosinophils in this highly selected clinical subgroup

of asthma, two prior studies of unselected asthmatic patients

demonstrated no benefit (Flood-Page et al., 2007; Leckie et al.,

2000), suggesting that eosinophils may play a critical role in a

small subset of patients. The possible benefit of anti-IL-5 in other

subsets of asthmatics (aspirin-intolerant asthmatics) with eosin-

ophilia remains to be determined. Notably, anti-IL-5 has been

shown to diminish the supepithelial deposition of extracellular

matrix proteins in mild asthmatics not on inhaled corticosteroids,

suggesting that, in parallel with the mouse data, eosinophils play

a role in airway remodeling (Flood-Page et al., 2003).

Basophils
Basophils are mature circulating granulocytes recruited to

peripheral tissues in the setting of allergic inflammation or hel-

minth infection. In the mouse, circulating basophils have been

difficult to assess by routine hematology, and studies have relied

on their characteristic ultrastucture with fewer, larger, and more-

uniform granules than eosinophils and PMNs. Murine basophils

have recently been identified by flow cytometry, on the basis

of their expression of CD49b (DX5+) and Fc3RI and the absence

of Kit, although the routine histology of this cell shows poor gran-

ulation (Lee and McGarry, 2007). Nonetheless, the ability to

identify this cell has led to an appreciation of new immune func-

tions as a facilitator of Th2 cell development and even as a

primary inducer of a Th2 cell response.

Mediator release from basophils can be triggered by both

Fc3RI-dependent and -independent mechanisms (reviewed in

Schroeder and Frederick, 2009). Whereas antigens can induce

specific crosslinking of Fc3RI to elicit histamine, lipid mediators,

and cytokines from human basophils, the HIV-1 glycoprotein

(gp) 120 and the Schistosoma mansoni egg glycoprotein IPSE-al-

pha-1 can activate basophils in an IgE-dependent but antigen-

independent manner, via nonspecific interactions that crosslink

Fc3RI. Basophils can also be activated by C5a to degranulate

and generate LTC4 and IL-4, and by IL-33 and PGN to elicit
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cytokines and augment IgE-dependent histamine, LTC4, and

cytokine release. Comparable studies of degranulation, eicosa-

noid formation, and cytokine production from antigen stimulation

of IgE sensitized mouse basophils are lacking but cytokine

production is apparent in the studies detailed below.

Recent murine studies have highlighted a role for basophils in

the effector phase of chronic allergic inflammation in vivo. The

subcutaneous administration of TNP-conjugated OVA into the

ear of Balb/c or C57BL/6 mice passively sensitized with a prior

i.v. injection of TNP-specific IgE leads to a triphasic ear swelling

with a dramatic third cellular phase at 48 hr consisting of eosin-

ophil and neutrophil infiltration in the tissue (Mukai et al., 2005).

This third phase is abolished in FcRg-deficient mice that lack

Fc3RI signaling, but re-established in BM chimeras with a DX5+

basophil-enriched population for reconstitution of irradiated

FcRg-deficient recipients. In a confirmatory study, the same

investigators showed that depletion of basophils with the baso-

phil-specific antibody BA103 24 hr prior to passive sensitization

and challenge abrogated the third phase, but left the immediate

and late-phase responses intact (Obata et al., 2007).

Basophils can also participate in immunoglobulin production.

In a study in which mice were sensitized and challenged with

APC, PE, or pneumococcal surface protein A (PspA), depletion

of basophils prior to the challenge with an antibody to the alpha

chain of Fc3RI (MAR-1) decreased antigen-specific antibody

production in all Ig subgroups and significantly increased sepsis

in mice that had been vaccinated to PspA and infected with

S. pneumoniae (Denzel et al., 2008).

A role for the basophil in facilitating Th2 cell immune responses

has recently been uncovered. Mice with a targeted deletion in the

gene encoding the interferon regulatory factor 2 (IRF-2) tran-

scription factor exhibit a Th2 cell-polarized phenotype with

high serum IgE titers and robust ex vivo IL-4 production by

splenic CD4+ T cells. This phenotype is associated with sponta-

neous expansion of the splenic Fc3RI+DX5+Kit�B220� basophil

compartment (Hida et al., 2005). In ex vivo coculture experi-

ments, splenic cell preparations from IRF-2-deficient mice

directed OT-II TCR transgenic T cells to produce IL-4. IL-4

production by OT-II cells was diminished with basophil depletion

and was abrogated by anti-IL-4, revealing a role for basophils in

Th2 cell development. In a unique approach to recognizing baso-

phil function, the Fc3RI+DX5+Kit� cell population in liver and

bone marrow was expanded by administration of IL-3 to WT

mice through a miniosmotic pump (Oh et al., 2007). These baso-

phils could induce naive PCC peptide-stimulated 5C.C7 trans-

genic CD4+ T cells to produce IL-4 in a dose-dependent fashion,

and basophil-mediated skewing was abrogated when Il4�/�

basophils were used. Further, naive transgenic T cells that

were adoptively transferred into Rag2�/� mice primed with

IL-3, but not untreated controls, responded to challenge with

PCC peptide by developing CD4+ IL-4+ Th2 cells, demonstrating

that in vivo Th2 cell development was augmented in an environ-

ment with IL-3-expanded basophils (Oh et al., 2007). Another

study used the ‘‘4get’’ mice, which contain a bicistronic

construct encoding enhanced green fluorescent protein in the

Il4 locus that can be used to track IL-4 competent cells in vivo

during the development of Th2 cell immune responses (Sokol

et al., 2008). Immunization of these mice with the model protease

allergen papain generated CD4+DX5�IL-4-eGFP+ Th2 cells in the
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draining lymph node on day 4 that were preceded by TSLP-

producing DX5+IL-4-eGFP+ basophils. Th2 cell generation was

abrogated with basophil depletion with the MAR-1 antibody or

with a neutralizing antibody to TSLP, thus demonstrating that

basophil-derived IL-4 and TSLP are critical checkpoints in the

development of Th2 cell immunity.

Recent studies have expanded the function of basophils to

include antigen presentation. In an in vitro system using TCR

Tg DO11.10-‘‘4get’’ T cells and OVA peptide, the addition of puri-

fied bone marrow-derived basophils (BMB) to the culture system

in the absence of any other APC produced Th2 differentiated

cells, as measured by IL-4-eGFP expression in T cells. This

effect was abrogated by antibodies to MHC II and by using baso-

phils from Il4�/�mice (Sokol et al., 2009). Th2 cell generation was

augmented in the presence of papain, which increases basophil

expression of MHC II, IL-4, and TSLP, indicating an innate

response of the basophil that augments direct presentation of

a soluble antigen. Basophils were able to generate Th2 cell

immune responses in vivo in the absence of other contaminating

APCs because OVA-pulsed basophils transferred into C57BL/6

WT mice or Ciita�/�mice (which do not express MHC II) induced

comparable production of IL-4 by antigen-restimulated CD4+ LN

T cells ex vivo. In a complementary study, BMB and splenic

NTNB Fc3RI+Kit� basophils primed by Strongyloides venezue-

lensis infection of WT mice were able to act as APCs and

generate Th2 cells in the DO11.10-OVA system (Yoshimoto

et al., 2009). In a nontransgenic system, WT Balb/c mice sensi-

tized with DNP-OVA- and anti-DNP-IgE-treated basophils and

challenged 4 days later with OVA protein had elevated serum

OVA-specific IgE and IgG1 titers and increased production of

IL-4 and IL-13 by OVA-restimulated splenic CD4+ T cells ex

vivo. Conversely, basophil depletion with the MAR-1 antibody

prior to i.v. immunization with DNP-OVA/anti-DNP Ag-IgE in

WT mice decreased OVA-specific IgG1, IL-4, and IL-13 produc-

tion from OVA-restimulated splenic CD4+ T cells. A different

study using transgenic mice with MHC II expression restricted

to CD11c+ cells revealed impaired generation of LN IL-4, IL-5,

and IL-13, persistent histologic inflammation, and a higher

worm burden after infection with Trichuris muris (Perrigoue

et al., 2009). Conversely, CD11c-DTR mice with DT-dependent

CD11c+ cell depletion had no impairment in Th2 cytokines or

worm expulsion, revealing that DCs were neither sufficient nor

required for productive helminth immunity. Basophils were

identified in the spleen of infected WT mice, and depletion of

basophils with the MAR-1 antibody resulted in decreased IL-4

transcript from colonic tissue, increased inflammation, and

increased worm burden, suggesting that basophils are critical

for Th2 cell-dependent immunity. Taken together, these recent

studies in mice reveal that basophils can direct a T cell response

to Th2 cell polarization in vitro and in vivo, but there are no data

showing direct Ag presentation by these cells in allergic pulmo-

nary inflammation.

Basophils are detected in the lung sections of patients with

fatal asthma (Kepley et al., 2001) and in the bronchial biopsies

of atopic asthmatics during the late phase after allergen chal-

lenge (Macfarlane et al., 2000). Basophils recovered from the

BAL of mild asthmatics after segmental allergen challenge

produce IL-4 protein assessed by flow cytometry on freshly

isolated cells and by ELISA on supernatants from short-term
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Figure 1. Innate Cells and Their Mediators
Modulate the Development of Th2 Cell
Immune Responses
Activated eosinophils (Eos) release eosinophil-
derived neurotoxin, which acts at DC TLR2 to
mature DCs, to generate IL-6, IL-8, IL-12p70, and
TNF-a, and to enhance the production of
antigen-specific Th2 cell cytokines and serum
IgG1. MC-derived TNF-a facilitates DC migration
to the lymph node. MCs facilitate DC antigen
presentation by taking up antigen and either
releasing it in exosomes or apoptosing for subse-
quent DC phagocytosis and activation. Activated
MCs and basophils produce TSLP, which upregu-
lates OX40L on DCs for the subsequent generation
of Th2 cell immunity. In the lymph node, basophils
direct Th2 cell development with the generation of
IL-4 and TSLP. Basophils can present soluble
antigen to direct Th2 cell development, which is
augmented by the presence of antigen-specific
IgE and critical to the generation of Th2 cell immu-
nity during helminth infection. IL-33, IL-25, and
TSLP potentiate the proliferation of committed
Th2 cells as well as their cytokine production.
culture in medium alone (Schroeder et al., 2001), and IL-4 mRNA

and protein colocalizes with basophils in the bronchial mucosa

of atopic asthmatics after segmental allergen challenge. Baso-

phil activation, as assessed by CD69 expression, is upregulated

in basophils from the peripheral blood of asthmatics as

compared to normal controls (Yoshimura et al., 2002). The use

of anti-IgE in patients with allergies and atopic asthma results

in a rapid decrement in serum IgE and the subsequent gradual

reduction of Fc3RI on MCs and basophils. In a study of patients

with perennial allergic rhinitis, treatment with anti-IgE decreased

Fc3RI surface expression on human basophils from pretreatment

levels of 220,000 receptors per cell to 8,000 receptors per cell

and correlated with a 90% reduction in basophil degranulation

in response to house dust mite antigen in vitro (MacGlashan

et al., 1997). In patients with seasonal allergic rhinitis, free IgE

titers were reduced by 96% after 3 days of omalizumab, but

a reduction in nasal PD30 response to ragweed challenge was

only noted after 14 days of treatment and this was associated

with a 70% reduction of Fc3RI expression on circulating baso-

phils (Lin et al., 2004). Thus, whereas studies using omalizumab

suggest a role for basophils and mast cells in Fc3RI-mediated

allergic responses, their contributions based on the mouse

studies could be cooperative or distinct, with the basophil impli-

cated in facilitating Th2 cell adaptive immune responses by

supplying IL-4 and/or TSLP or by acting as an APC for select

allergens.

Concluding Remarks
Asthma is a heterogeneous disease with a variable clinical

presentation, association with atopy, profile of recruited inflam-

matory cells, and response to targeted therapies, suggesting

involvement of immune pathways beyond the canonical Th2

cell paradigm. An emerging body of evidence from human

in vitro studies and mouse models demonstrates that innate

stromal and hematopoietic effectors cells can promote CD4+
Th2 cell immune responses by activating DCs, supplying IL-4

and TSLP, acting as APCs, and directly activating committed

memory Th2 cells (Figure 1). However, these cells can them-

selves generate the full repertoire of Th2 cytokines, lipid media-

tors, eosinophilic, and neutrophilic inflammation that is the

hallmark of asthma (Figure 2). Thus, whereas the generation of

inflammatory mediators from epithelial cells, iNKT cells, MCs,

eosinophils, and basophils has previously been viewed as a

mechanism to amplify established inflammation, complex aller-

gens that provide immunogenic epitopes and PAMPs for TLR,

CLR, and/or NLR signaling can activate these innate cells to

initiate the development of innate and adaptive host immune

responses. Our current understanding of these innate re-

sponses, even in mice, has substantial gaps. They include the

distinction between studies with pure proteins (with or without

adjuvants) and those conducted with clinically relevant allergens

or viral models of airway inflammation; the contribution of

neutrophils, if any, to these innate responses; the role of myeloid

DCs and macrophages, which can produce leukotrienes and

inflammatory mediators in response to PAMPS, allergens, and

chitin (Barrett et al., 2009; Reese et al., 2007; Suram et al.,

2006) as effector cell participants in allergic inflammation

(Figure 2); and the delineation of which innate pathways are rele-

vant in the absence of T and B cell immunity. It seems reasonable

to consider the roles and magnitude of these innate signals in hu-

mans with nonatopic asthma, in viral exacerbations of asthma,

and in neutrophil-predominant asthma. What is clear is that

exposure of the lung to diverse environmental elements can acti-

vate many pathways to airway inflammation and that many new

potential targets for therapy are emerging from basic research.
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